Oldcivilizations's Blog

Blog sobre antiguas civilizaciones y enigmas

Las edades glaciales en la Tierra 1/2


En estos 2 artículos intentamos explicar toda una serie de conceptos relacionados con las glaciaciones en la Tierra, ya que tienen una gran importancia en el devenir de la vida en este planeta y sirven para entender mejor lo que puede haber incidido en la vida en la Tierra a lo largo del tiempo, tanto en el pasado como en el futuro.  La información para este artículo es el resultado de consolidar informaciones de distintas fuentes.

Una glaciación o edad de hielo es un periodo de larga duración en el cual baja la temperatura global de la Tierra, dando como resultado una expansión del hielo continental en los casquetes polares y los glaciares. Las glaciaciones se subdividen en periodos glaciales, siendo el período Würm en Europa (o Wisconsin en América) el último que hubo. Y como el término glaciación se refiere a un periodo con casquetes glaciares tanto en el hemisferio norte como el sur; ello implica que formalmente todavía nos encontramos en una glaciación, ya que todavía hay casquetes polares en Groenlandia y la Antártida. Cuando se habla de los últimos millones de años, se utiliza «glaciación» para referirse a periodos más fríos, con extensos casquetes glaciares en Norteamérica y Eurasia. Y, según esta definición, la glaciación más reciente acabó hace 10.000 años.

  

Anton Uriarte Cantolla es un geógrafo español, nacido y residente en San Sebastián especializado en climatología. Doctor en geografía por la Universidad de Zaragoza, FRMetS (Fellow Royal Meteorological Society) , ha sido catedrático en la Universidad del País Vasco y es especialmente conocido por su posición escéptica respecto a la influencia antropogénica sobre el clima. Antón Uriarte afirma que existe un cambio climático. Sin embargo mantiene posiciones relativamente contrarias a la influencia que tiene el ser humano en ese cambio: afirma que tal influencia es irrelevante, y que el principal causante del aumento de temperaturas no es el dióxido de carbono, e incluso no considera que el CO2 sea un contaminante ya que no es tóxico  sino al contrario, un fertilizante necesario para la vida vegetal, por lo que una mayor cantidad favorecerá el crecimiento de las plantas. Critica al IPCC por diversos motivos, como errores en los modelos o valorar incorrectamente los efectos del cambio de usos del suelo en el clima. Considera que los medios de comunicación están actuando de forma alarmista, exagerando los posibles problemas que pueda traer el cambio climático, no diciendo las incertidumbres, no comentando noticias buenas ni aquellas que parezcan contradecir la idea de que la Tierra se está calentando, como la existencia de olas de frío o la no disminución de la banquisa de hielo antártica. También duda de la honestidad de aquellos que mantienen posturas catastrofistas, ya que en algunos casos tienen intereses en ello. Antón Uriarte es crítico con las energías renovables por la gran cantidad de espacio que ocupan y su impredecibilidad y con la energía nuclear por su peligrosidad, mientras que muestra sus simpatías por el carbón por ser barato y abundante. Considera que el aumento de gases de efecto invernadero en la atmósfera va a amortiguar la frecuencia de fenómenos meteorológicos extremos y que no existen pruebas de que existan más huracanes ni los vaya a haber. Es más, considera que un clima cálido será mejor para la vida en la Tierra no sólo porque el calor favorece la vida sino también porque en una Tierra más cálida llueve más. Respecto al protocolo de Kioto, le parece que se trata, sobre todo, de una medida publicitaria ya que gran parte de los países de la Unión Europea ya lo tenían cumplido de antemano gracias al uso de la energía nuclear (Francia), al cierre de la industria pesada (Alemania) y al abandono del carbón (Gran Bretaña). Se trata, según él, de un tratado poco útil. Además considera que, aunque se hable mucho de las energías renovables para cumplirlo, el protocolo tiene como objetivo relanzar la energía nuclear. Afirma que la reforestación puede tener medidas contraproducentes para el calentamiento, ya que los bosques tienen un albedo muy bajo, por lo que absorben bien la luz del Sol. Entre sus obras, podemos resaltar: Historia del Clima de la Tierra, Servicio Central de Publicaciones del Gobierno Vasco, 2003, en que he basado parte de este artículo;  Ozono: la catástrofe que no llega, Donostia : Tercera Prensa D.L. 1995; y El régimen de precipitaciones en la costa NW y N de la península Ibérica, Donostia : CAP, 1983

Parece ser que las glaciaciones periódicas de los últimos 2,5 millones de años fueron causadas por cambios en el eje de rotación de la Tierra y no por la acumulación de dióxido de carbono, tal como indica la revista Science. Peter Clark, profesor de geociencias de la Universidad de Oregón, afirmó lo siguiente: “La radiación solar fue el desencadenante que comenzó el deshielo…También hubo cambios en los niveles de CO2 atmosférico y de la circulación oceánica, pero eso ocurrió después y aumentó un proceso que ya se había iniciado”. Ese cambio modificó los niveles de radiación solar como ocurrió en la última glaciación que comenzó hace unos 26.000 años y se prolongó por más de siete milenios. Los científicos aseguran en su informe que el descubrimiento es importante, porque ayudará a comprender la forma en que ocurre la reducción de las capas de hielo ante los mecanismos de radiación.

Según Clark: “Ahora sabemos con mayor certeza cómo respondieron las capas de hielo a la radiación solar y eso será muy útil para comprender lo que nos depara el futuro“. Los científicos analizaron seis mil plataformas de hielo con el fin de definir cuándo comenzaron a descongelarse, y con ello confirmaron la teoría planteada hace más de 50 años: la causa de las glaciaciones fueron causadas por los cambios en la rotación terrestre. Tal como ha dicho Clark, “esas modificaciones que alteran el ángulo de la radiación solar se deben a la influencia gravitatoria de planetas mayores como Júpiter y Saturno sobre la Tierra”. De acuerdo con los científicos, en algún momento del actual período interglaciar en el que nos encontramos, volverán a producirse las condiciones que llevaron a la última glaciación. Clark manifiesta que ese lentísimo proceso se ha acelerado debido a la presencia de los gases invernadero en la atmósfera y lo que ha ocurrido en los últimos 200 años, habría ocurrido antes en varios milenios. Y Clark añade: “Una de las grandes preocupaciones ahora es la forma en que responderán las capas de hielo de Groenlandia y la Antártida ante el calentamiento global y cómo aumentarán los niveles oceánicos“.

En los últimos 430.000 años, el porcentaje de tiempo en el que el clima ha sido tan cálido como en la actualidad es realmente muy pequeño, entre el 5% y el 10%. Esta es una de las primeras conclusiones del estudio de una muestra de hielo de 740.000 años recuperado por los científicos del Proyecto Europeo de Extracción de Muestras de Hielo en la Antártica (EPICA), que revela que, entre la desaparición del “Homo antecessor” de Atapuerca hasta la actualidad, la Tierra ha sufrido ocho glaciaciones. El “Homo antecessor” es una especie fósil perteneciente al género Homo, considerada la especie homínida más antigua de Europa y que tiene más de un millón de años de antigüedad.  Esta muestra de hielo es un cilindro de diez centímetros de diámetro que se extrae del subsuelo en fragmentos de unos tres metros de largo. Estas muestras sirven para saber cómo era el clima en la época en la que el hielo se formó, dado que en él quedan atrapados gases y partículas. La muestra recuperada por los investigadores europeos se remonta a hace 740.000 años y esta muestra permitirá saber cómo evolucionó el clima durante milenios, mucho antes de que el hombre empezara a lanzar a la atmósfera gases de efecto invernadero, ya que todo lo que sucede en la Tierra y produce cambios en la atmósfera, se registra en el hielo.

 

Las muestras de hielo informan a los científicos de las concentraciones en la atmósfera de gases de efecto invernadero, polvo y cenizas volcánicas, así como acerca de las temperaturas y precipitaciones. Así, saben que, en los últimos 800.000 años, los periodos cálidos, entre glaciaciones, han sido mucho más cortos que las edades de hielo. Según James White, geólogo de la Universidad de Colorado: “los periodos calidos interglaciares han durado una media de 6.000 años, con la excepción del actual, que comenzó hace 12.000 años, y de uno que alcanzó los 28.000 años hace más de 450.000“.  La muestra de hielo antes comentada puede ayudar a determinar cuáles son los primeros signos de una glaciación y predecir la futura evolución del clima. De momento, según los investigadores, sin influencia humana, la próxima edad de hielo no llegaría antes de 15.000 años. Los científicos procedentes de los diez países europeos del proyecto EPICA han realizado, en los últimos años, dos perforaciones profundas en la Antártida para investigar las relaciones existentes entre la química atmosférica y los cambios climáticos ocurridos en los últimos 740.000 años.

  
Durante el eón Arqueozoico, la alta concentración de gases invernadero, que calentaban las capas bajas de la atmósfera, mantuvo la Tierra deshelada, a pesar de que la luminosidad del Sol era bastante más baja aún que la presente. Como aclaración debemos añadir que, en geología, los eones son los períodos en los que se encuentra dividida la historia de la Tierra desde el punto de vista geológico y paleontológico y equivalen a mil millones de años. Pero con la paulatina reducción de los gases invernadero se abrió la posibilidad, en el Proterozoico, de que se produjesen glaciaciones. A este respecto es conveniente saber que el «supereón» Precámbrico es la primera y más larga etapa de la Historia de la Tierra y engloba los eones Hádico, Arcaico o Arqueozoico y Proterozoico. Comienza cuando la Tierra se formó, hace 4.600 millones de años, y termina hace aproximadamente 570 millones de años, durando 4.030 millones de años aproximadamente y dejando paso al periodo Cámbrico. A pesar de ser una etapa tan larga y en la que debieron ocurrir muchos sucesos, los geólogos casi no tienen datos sobre ella ya que las rocas formadas durante el precámbrico han sido erosionadas y enterradas. Ocupa el 87% de la escala temporal geológica. Las rocas precámbricas son principalmente ígneas y metamórficas. En África y en Groenlandia se encuentran las rocas terrestres más antiguas (ver artículo “Eras geológicas de la Tierra”).

Las primeras evidencias que tenemos de glaciaciones en los continentes primitivos datan del período huroniano, en la transición del Arqueozoico al Proterozoico, en el intervalo entre 2.700 y 2.300 millones de años. Estas glaciaciones, pues al parecer hubo al menos tres fases muy frías, fueron terribles. Afectó a gran parte de la Tierra y se habría debido al efecto del oxígeno, creado por las cianobacterias, sobre el metano, que por su alta concentración habría sido hasta entonces el principal gas invernadero. Y la concentración de metano en la atmósfera hace 2.300 millones de años pudo ser 1.000 veces superior a la actual. Hay señales geológicas de la glaciación huroniana especialmente en estratos rocosos de la región del Lago Hurón, en Canadá, y también en Sudáfrica. De aquella época se han encontrado tillitas, rocas sedimentarias que agrupan materiales de tamaño muy diferente y que proceden de la cementación de antiguas morrenas glaciales. También han aparecido en estratos geológicos huronianos superficies con estrías, provocadas por la abrasión de la enorme masa de hielo que se movía por encima.

  

Tras las glaciaciones huronianas el clima pasó de nuevo a ser muy cálido, sin que se sepa aún cómo explicar la razón del cambio. Por encima de los estratos glaciales canadienses aparecen algunos tipos de roca, como la caolinita, que se forman en ambientes tropicales. Y durante un largo intervalo de casi mil quinientos millones de años, es decir, durante casi todo el eón Proterozoico, no se encuentran indicios de más glaciaciones. Pero al final del Proterozoico (más concretamente el Neoproterozoico), en rocas datadas entre hace unos 750 y 580 millones de años, se observan señales de nuevas glaciaciones. Y no fueron unas glaciaciones normales, sino probablemente las más intensas que ha habido nunca. Estas glaciaciones fueron probablemente varias y duraron varios millones de años cada una. Hubo probablemente tres episodios glaciales importantes: Sturtiense, hace unos 710 millones de años; Marinoense, hace unos 635 millones de años y Varangiense, hace unos 600 millones de años. Existen pruebas geológicas de que afectaron a todos los continentes, de tal forma que las regiones heladas se extendieron hasta latitudes tropicales. Lo que está aún en debate es si durante su transcurso la superficie del mar se heló por completo, o casi por completo.

 

Durante estas glaciaciones del Neoproterozoico el planeta casi dejó de ser apto para la vida. En muchas series sedimentarias de localidades situadas entonces en los trópicos aparecen estratos con depósitos glaciales correspondientes a una fase tan fría que hace pensar que cesó la actividad biológica marina. Los análisis muestran que el carbono de esos estratos glaciales es muy pobre en carbono-13, lo que indica falta de actividad biológica marina. Ocurre que los organismos fotosínteticos oceánicos prefieren absorber menos carbono-13 (y más carbono-12), por lo que, cuando la vida es prolífica, suelen hacer que en el agua sea alta la concentración isotópica del carbono-13, y consecuentemente que suba también la concentración de ese isótopo en los carbonatos inorgánicos precipitados, que se forman a partir del carbono disuelto en el océano. Por eso, la concentración baja de carbono-13 en los sedimentos carbonatados de las últimas fases de las glaciaciones neoproterozoicas indican que la actividad fotosintética marina fue entonces mínima. Otra segunda huella de las glaciaciones del Neoproterozoico son las formaciones masivas de minerales de hierro que aparecen en los estratos geológicos de aquella época. Estas formaciones se presentan en forma de arcillas ferruginosas bandeadas, en las que se superponen capas grises de sílex y otras de material rojo, rico en hierro.

La idea de que en el pasado los glaciares fueron más extensos era un conocimiento popular en algunas regiones alpinas de Europa. En 1821, un ingeniero suizo, Ignaz Venetz, presentó un artículo en el que sugería la presencia de rasgos de paisaje glaciar a distancias considerables de los glaciares existentes en los Alpes; esto era indicativo de que los glaciares fueron mayores en el pasado y que ocuparon posiciones valle abajo. Entre 1825 y 1833, Charpentier reunió pruebas para apoyar esta idea. Eln 1836, Charpentier y Venetz convencieron a Louis Agassiz de su teoría, y Agassiz la publicó en su libro “Estudio sobre los glaciares“. Charpentier y Venetz rechazaron las ideas de Agassiz, quien había ampliado el trabajo de éstos, afirmando que la mayoría de los continentes habían estado cubiertos de hielo en tiempos remotos. Agassiz presentó como prueba de la teoría glaciar un ejemplo clásico del uniformitarismo. Es decir, puesto que las estructuras observadas no podían ser explicadas de un modo ajeno a la actividad glaciar, los investigadores reconstruyeron la extensión de los glaciares en el pasado, ahora desaparecidos, en función de la presencia de características propias de zonas sometidas a la acción de los glaciares fuera de la situación actual de éstos.

En la época de Agassiz lo que se estudiaba eran los periodos glaciales de los últimos centenares de miles de años. Todavía no se sospechaba la existencia de antiguas edades glaciales. No obstante, a principios del siglo XX se estableció que la orografía terrestre mostraba características sólo explicables por la sucesión de varios eventos glaciales; de hecho, se dividió el periodo glacial cuaternario para Europa y Norteamérica en cuatro elementos, basados fundamentalmente en los depósitos glaciales (en orden de aparición, Nebrasquiense, Kansaniense, Illinoiense y Wisconsiense). Estas divisiones tradicionales fueron sustituidas a finales de siglo cuando los sondeos de sedimentos del fondo marino revelaron ser un registro mucho más completo sobre el clima del periodo glacial cuaternario. Hay tres tipos principales de efectos de las glaciaciones que han sido empleadas como pruebas de su pasada existencia: geológicas, químicas y paleontológicas. 

Las pruebas geológicas se encuentran en varias formas, como las rocas erosionadas (ya por arranque, en fases iniciales, ya por abrasión y generación de estrías glaciares, ya por pulverización y formación de harina de roca), valles glaciares, aristas glaciares y horns, rocas aborregadas, morrenas glaciares, drumlins, depósito de tills o bloques erráticos, factura de llanuras aluviales, trenes de valle, lagos en las llanuras y fiordos en las costas. Es decir, las condiciones del clima propio de una época glacial provocan la aparición de las fisonomías antes descritas en la orografía. Las glaciaciones sucesivas tienden a distorsionar y eliminar las pruebas geológicas, haciendo que sean difíciles de interpretar.

Las pruebas químicas consisten principalmente en variaciones en la proporción de isótopos en rocas sedimentarias, núcleos sedimentarios oceánicos y, para los periodos glaciales más recientes, núcleos de hielo (normalmente situados en las llamadas nieves perpetuas). Puesto que el agua con isótopos más pesados tiene una temperatura de evaporación más alta, su cantidad se reduce cuando las condiciones son más frías; esto permitió la elaboración de un registro térmico. Aun así, estas pruebas pueden estar adulteradas por otros factores que cambian la proporción de isótopos. Por ejemplo, una extinción en masa incrementa la proporción de isótopos ligeros en los sedimentos y en el hielo porque los procesos biológicos tienden a preferir estos últimos; por lo tanto, una reducción en los procesos biológicos libera más isótopos ligeros, que pueden depositarse en los sedimentos.

Las pruebas paleontológicas se basan en los cambios en la distribución geográfica de los fósiles; durante un periodo de glaciación, los organismos adaptados al frío migran hacia latitudes más bajas, y los organismos que prefieren un clima más cálido se extinguen o viven en zonas más ecuatoriales. Esto da lugar a la aparición de refugios glaciales y movimientos biogeográficos de retorno. También es difícil interpretar estos indicios puesto que precisan de: secuencias de sedimentos que representen un largo período, diferentes latitudes y que se puedan correlacionar fácilmente; organismos primitivos presentes durante amplios periodos con caracteres lo suficientemente homogéneos como para poder atribuirlos a un mismo taxón, y de los cuales se conozca el clima ideal (es decir, que puedan emplearse como marcadores); y descubrimientos de fósiles adecuados, cosa que depende mucho del azar.

 

Pese a las dificultades, los análisis de núcleos de hielo y de sedimentos oceánicos muestran claramente la alternancia de periodos glaciales e interglaciares durante los últimos millones de años. También confirman la relación entre las glaciaciones y fenómenos de la corteza continental como por ejemplo los bloques erráticos. Por esto se suelen aceptar los fenómenos de la corteza continental como prueba válida de edades glaciales anteriores, cuando se encuentran en capas creadas mucho antes que el abanico de tiempo que permiten estudiar los núcleos de hielo y los sedimentos marinos.

Ha habido al menos cuatro grandes edades glaciales en el pasado. Aparte de estos periodos, parece que la Tierra siempre ha estado libre de hielo incluso en sus latitudes más altas. La glaciación hipotética más antigua, la Glaciación Huroniana, tuvo lugar entre hace 2.700 y 2.300 millones de años, a principios del eón Proterozoico. La glaciación bien documentada más antigua, y probablemente la más severa de los últimos mil millones de años, tuvo lugar entre hace 850 y 630 millones de años (período Criogénico), y podría haber producido una glaciación global (es decir, un periodo en el cual el planeta entero quedó cubierto de hielo). Acabó muy rápidamente a medida que el vapor de agua volvía a la atmósfera terrestre y se incrementaba el efecto invernadero provocado por la acumulación de dióxido de carbono emitido por los volcanes, ya que los mares gélidos no tenían capacidad de absorción del citado gas. Se ha sugerido que al final de esta glaciación se desencadenó la explosión cámbrica, aunque esta teoría es reciente y controvertida.

Una glaciación menor, la andeana-sahariana, sucedida hace entre 460 y 430 millones de años, tuvo intervalos con extensos casquetes polares. La glaciación actual empezó hace 40 millones de años con la expansión de una capa de hielo en la Antártida. Se intensificó a finales del Plioceno, hace tres millones de años, con la extensión de capas de hielo en el hemisferio norte, y continuó durante el Pleistoceno. Desde entonces, el mundo ha pasado ciclos de glaciación con el adelanto y retroceso de las capas de hielo durante miles de años. El periodo glacial más reciente en sentido amplio acabó hace unos diez mil años, por lo que se puede aseverar que nos situamos en un periodo interglacial. Existen sin embargo otras posturas que afirman estamos en una era postglacial.

Las edades glaciales también se pueden subdividir según el ámbito geográfico y el tiempo.  Por ejemplo, los nombres Riss (hace 180.000 – 130.000 años) y Würm (hace 70.000 – 10.000 años) se refieren específicamente a glaciaciones de la región alpina. Cabe destacar que la extensión máxima del hielo no se mantiene durante todo el periodo. Desafortunadamente, la acción erosiva de cada glaciación tiende a eliminar la mayoría de las pruebas de capas de hielo anteriores casi completamente, excepto en regiones en que la capa más reciente no llega a la expansión máxima. Es posible que no se conozcan periodos glaciales más antiguos, especialmente del Precámbrico, debido a la escasez de rocas situadas a latitudes altas durante los periodos más antiguos. Dentro de las edades glaciales,  al menos en la última, hay periodos más templados y más severos. Los más fríos se denominan “periodos glaciales“, y los más cálidos, “interglaciares“.

En la siguiente tabla se lista la sucesión de épocas glaciales e interglaciares:

Clima Denominación Antigüedad Época
Postglacial Actual 8.000 Holoceno
Glacial Glaciación de Würm o Wisconsin 80.000 Pleistoceno
Interglaciar Riss-Würm 140.000
Glacial Glaciación de Riss o Illinois 200.000
Interglaciar Mindel-Riss 390.000
Glacial Glaciación de Mindel o Kansas 580.000
Interglaciar Günz-Mindel 750.000
Glacial Glaciación de Günz o Nebraska 1,1 m.a.
Interglaciar Donau-Günz 1,4 m.a.
Glacial Donau 1,8 m.a
Interglaciar Biber-Donau 2 m.a.
Glacial Biber 2,5 m.a.
Glacial Oligoceno 37 m.a. Cenozoico
Interglaciar Eoceno superior 40 m.a.
Glacial Paleógeno 80 m.a.
Interglaciar Cretácico 144 m.a. Mesozoico
Glacial Permocarbonífero 295 m.a. Paleozoico
Glacial Carbonífero inferior 350 m.a.
Glacial Ordovícico 440 m.a.
Glacial Precámbrico 700 m.a. Precámbrico
Glacial Primera glaciación 2.000 m.a Proterozoico

Los glaciales se forman por climas más fríos y secos en gran parte de la tierra, así como por grandes masas de hielo que se extienden desde los polos por tierra y mar. Los glaciares de las montañas llegan a altitudes más bajas a causa de una cota de nieve menor. El nivel del mar baja debido al agua atrapada al hielo. Hay pruebas que las glaciaciones distorsionan los patrones de circulación oceánica. Como que la Tierra tiene grandes zonas heladas en el Ártico y la Antártida, nos encontramos en un mínimo glacial. Estos periodos se denominan “interglaciares“. El interglaciar actual recibe el nombre de Holoceno. Se atribuía a los periodos glaciales una duración de unos doce mil años, pero las conclusiones derivadas del estudio de núcleos de hielo parecen contradecirlo. Por ejemplo, un artículo en Nature sugiere que el interglaciar actual puede ser parecido a un interglaciar anterior que tuvo una duración de 28.000 años.

  

Los cambios debidos a la variación orbital de la Tierra sugieren que la próxima glaciación empezará de aquí a cincuenta mil años, pese al calentamiento global provocado por el ser humano. Aun así, los cambios provocados por los gases de efecto invernadero deberán compensar la variación orbital si se continúan usando combustibles fósiles. Cada periodo glacial está sujeto a una retroalimentación positiva que lo hace más severo y una retroalimentación negativa que mitiga los efectos y que acaba por restablecer el equilibrio. El hielo y la nieve aumentan el albedo, es decir, hacen que se refleje más luz solar y se absorba menos. El albedo es la relación, expresada en porcentaje, de la radiación que cualquier superficie refleja sobre la radiación que incide sobre la misma. Las superficies claras tienen valores de albedo superior a las oscuras, y las brillantes más que las opacas. El albedo medio de la Tierra es del 37-39% de la radiación que proviene del Sol.  Por lo tanto, cuando baja la temperatura del aire, se extienden las capas de hielo y nieve, y esto continúa hasta que se logra un equilibrio. La reducción de los bosques que provoca la expansión del hielo también incrementa el albedo.

Otra teoría sugiere que un océano Ártico sin hielo provocaría más precipitaciones en forma de nieve en latitudes altas. Cuando el océano Ártico está cubierto de hielo a baja temperatura, hay poca evaporación o sublimación, y esto hace que las regiones polares sean bastante secas en cuanto a las precipitaciones, más o menos como los desiertos. Estas escasas precipitaciones permiten que la nieve se evapore durante el verano. Cuando no hay hielo, el océano absorbe energía solar durante los largos días estivales, y se evapora más agua. Con más precipitaciones, una parte de la nieve no se evapora durante el verano, si bien el hielo glacial se forma a latitudes inferiores, reduciendo las temperaturas por la vía del aumento del albedo (las predicciones actuales indican que el calentamiento global eliminará el hielo del océano Ártico de aquí a unos cincuenta años). El agua fresca adicional que llega al norte del océano Atlántico durante un ciclo más cálido también puede reducir la circulación termohalina  (cinta transportadora oceánica). Tal reducción (mitigando los efectos del corriente del Golfo) también enfriaría el norte de Europa, cosa que causaría más nieve. También se ha sugerido que, durante una larga glaciación, los glaciares pueden atravesar el Golfo de San Lorenzo, llegando hasta el norte del Atlántico y bloqueando la corriente del golfo.

 

Las capas glaciales que se forman durante las glaciaciones erosionan la tierra que tienen debajo. Tras un tiempo, esto produce un hundimiento isostático de la corteza por debajo del nivel del mar, reduciendo el espacio en que se pueden formar capas de hielo. Esto mitiga la retroalimentación del albedo, igual que la reducción del nivel del mar que acompaña la formación de las capas de hielo. Otro factor es que la aridez provocada por el máximo glacial reduce las precipitaciones, haciendo más difícil que se mantenga la glaciación. El retroceso glacial provocado por este o cualquier otro proceso puede ser amplificado por procesos similares. Cualquier teoría científica que pretenda explicar las causas de las glaciaciones debe encarar dos cuestiones fundamentales. ¿Qué causa el comienzo de las condiciones glaciares? y ¿qué causó la alternancia de etapas glaciales e interglaciares que han sido documentadas para el Pleistoceno?

Las causas de las edades glaciales todavía son un tema controvertido. Hay consenso en que varios factores son importantes: la composición de la atmósfera; los cambios en el órbita de la Tierra alrededor del Sol (llamados ciclos de Milankovitch) y posiblemente la órbita del Sol alrededor del centro de la galaxia; la dinámica de las placas tectónicas y su efecto sobre la situación relativa y la cantidad de corteza oceánica y terrestre a la superficie de la Tierra; variaciones en la actividad solar; la dinámica orbital del sistema Tierra-Luna; y el impacto de meteoritos de grandes dimensiones o las erupciones volcánicas. Algunos de estos factores tienen una relación de causa-efecto. Por ejemplo, los cambios en la composición de la atmósfera de la Tierra (especialmente la concentración de gases de efecto invernadero) pueden alterar el clima, mientras que el cambio climático puede cambiar la composición de la atmósfera.
 

William Ruddiman, Maureen Raymo y otras han sugerido que las mesetas del Tíbet y Colorado son inmensos sumideros de CO2, con una capacidad de eliminar suficiente dióxido de carbono de la atmósfera como por ser un factor significativo de la tendencia de enfriamiento de los últimos cuarenta millones de años. También argumentan que aproximadamente la mitad de su elevación (y el crecimiento de su capacidad de eliminar CO2) tuvo lugar a lo largo de los últimos diez millones de años. El cambio más importante es en la cantidad de gases de efecto invernadero en la atmósfera. Hay indicios del nivel de gases de efecto invernadero en los casquetes glaciares, pero es difícil establecer relaciones de causalidad. El nivel de gases de efecto invernadero también podría haber sido alterado por otros factores propuestos como causa de las edades glaciales, como por ejemplo el movimiento de los continentes o el vulcanismo.

La teoría de la “Tierra Bola de Nieve” afirma que la severa glaciación de finales del Proterozoico llegó a su fin a causa de un aumento del nivel de CO2 de la atmósfera, y algunos de los que apoyan a la teoría argumentan que la Tierra Bola de Nieve fue causada por una reducción del CO2 en ella. Esta hipótesis prevé la repetición de este evento. William Ruddiman ha propuesto la hipótesis del Antropoceno antiguo (nombre dado por algunos al periodo más reciente de la historia de la Tierra), según la cual los humanos empezaron a tener un impacto global significativo en el clima y los ecosistemas de la Tierra no ya en el siglo XVIII con la Revolución industrial, sino ya hace ocho mil años, debido a las intensas actividades agrícolas de los humanos antiguos. Ruddiman afirma que los gases de efecto invernadero generados por la agricultura impidieron el comienzo de una nueva glaciación.

El registro geológico parece indicar que las edades glaciales empiezan cuando los continentes se encuentran en una posición que bloquea o reduce el flujo de agua cálida del ecuador a los polos, permitiendo la formación de casquetes glaciares. Las capas de hielo aumentan el albedo de la Tierra, reduciendo la absorción de radiación solar. Esta reducción de la absorción de radiación enfría la atmósfera; este enfriamiento hace crecer los casquetes de hielo, aumentando el albedo todavía más. Este ciclo continúa hasta que la reducción en la erosión causa un aumento del efecto invernadero. Se conocen tres configuraciones de la posición de los continentes que bloqueen o reduzcan el flujo de agua cálida del ecuador a los polos: cuando un continente se encuentra en un polo, como la Antártida actualmente; cuando un mar polar se encuentra casi totalmente rodeado de masas de tierra, como el océano Ártico; cuando un supercontinente cubre la mayoría del ecuador, como Rodinia durante el período Criogénico.

Puesto que la Tierra tiene actualmente un continente en su polo sur y un océano en el polo norte, los geólogos infieren que la Tierra continuará sufriendo periodos glaciales en el futuro geológicamente próximo. Algunos científicos opinan que el Himalaya es un factor clave en la glaciación actual, pues estas montañas incrementan las precipitaciones totales de la Tierra, y por lo tanto el ritmo al cual el CO2 es eliminado de la atmósfera, reduciendo el efecto invernadero. La formación del Himalaya empezó hace unos setenta millones de años, cuando la placa india colisionó con la placa eurasiática (todavía continúa elevándose unos cinco milímetros por año porque la placa india se mueve a un ritmo de 67 mm por año). La historia del Himalaya encaja generalmente con la reducción a largo término de la temperatura mediana global desde mediados del Eoceno, hace cuarenta millones de años. Otros aspectos importantes que contribuyeron a la configuración climática de periodos anteriores son las corrientes oceánicas, que varían según la posición de los continentes y otros factores. Tienen la capacidad de enfriar (por ejemplo, contribuyendo a la creación del hielo de la Antártida) y de calentar (otorgando a las islas Británicas un clima templado en lugar de boreal) el clima global. El cierre del istmo de Panamá hace aproximadamente tres millones de años podría haber dado pie al periodo actual de fuerte glaciación en Norteamérica, poniendo fin al intercambio de agua entre las regiones tropicales de la Atlántico y el Pacífico.

Los ciclos de Milankovitch son una serie de variaciones cíclicas en las características de la órbita de la Tierra alrededor del Sol. Milutin Milankovitch fue un astrofísico serbio que nació en 1879 y  murió en 1958.  Cada ciclo tiene una duración diferente, de forma que a veces sus efectos se compensan y a veces incluso se cancelan mutuamente. Los investigadores dudan de que los ciclos de Milankotivch puedan iniciar o poner fin a una glaciación: pues incluso cuando sus efectos se combinan, no son suficientes; y porque las ocasiones en que los efectos se compensan o se cancelan son mucho más regulares y frecuentes que las edades glaciales. No obstante, existen modelos climáticos que los incluyen y que predicen la respuesta climática. En cambio, hay indicios importantes que los ciclos de Milankovitch afectan la alternancia de periodos glaciales e interglaciares dentro de cada edad de hielo.

La glaciación actual es la más investigada y la mejor comprendida, especialmente los últimos 400.000 años, pues este es el periodo que cubren los núcleos de hielo, que muestran la composición atmosférica, la temperatura y el volumen de hielo. En este periodo, la correspondencia de los periodos glaciales e interglaciares con los periodos de variación orbital es tan clara que se suele aceptar el papel que juega la variación de la órbita. Los efectos combinados de la distancia cambiante al Sol y las variaciones en el eje de la Tierra y en su inclinación redistribuyen la luz solar que recibe la Tierra. Los más importantes son los cambios en la inclinación del eje de la Tierra, que afectan la intensidad de las estaciones. Por ejemplo, la insolación a 65º de latitud norte en julio puede variar hasta un 25%. Se cree que las capas de hielo avanzan cuando los veranos se vuelven demasiado fríos para deshacer toda la nieve acumulada durante el invierno anterior. Algunos creen que las variaciones orbitales no son suficientes como para desencadenar una glaciación, pero hay otros factores que pueden contribuir.

Mientras que la teoría de Milankovitch predice que los cambios cíclicos de la órbita solar pueden quedar grabados en el registro glacial, faltan explicaciones sobre el papel que juegan los ciclos en la alternancia glacial-interglaciar. De hecho, durante los últimos 800.000 años, el período de alternancia glacial-interglaciar ha sido de 100.000 años, cosa que se corresponde con los cambios en la excentricidad e inclinación orbitales. Pero esta es de lejos la frecuencia más reducida de las tres predichas por Milankovitch. Durante el periodo entre hace 3 y 0,8 millones de años, el patrón dominante de glaciación se correspondía con el periodo de 41.000 años de los cambios en la oblicuidad de la Tierra (la inclinación de su eje). Las razones del dominio de una frecuencia sobre otra todavía no se comprenden bien y están siendo investigadas, pero es probable que la respuesta esté relacionada con la complejidad del sistema climático terrestre.

La teoría tradicional no llega a explicar el dominio del ciclo de cien mil años durante los últimos ocho ciclos. Richard A. Muller, Gordon J. MacDonald y otras han indicado que estos cálculos son aptos para un modelo bidimensional de la órbita terrestre, pero que la órbita tridimensional también tiene un ciclo de variación de la oblicuidad que dura cien mil años. Han propuesto que estas variaciones de la oblicuidad pueden conducir a variaciones en la insolación. Aun cuando pone en juego un mecanismo diferente al del concepto tradicional, los periodos predichos a lo largo de los últimos 400.000 años son prácticamente los mismos. La validez de la teoría de Muller y MacDonald ha sido cuestionada. William Ruddiman sugiere un modelo que explica el ciclo de cien mil años modulando la excentricidad sobre la precisión, combinado con el efecto de los gases de efecto invernadero. Peter Huybers propone otra teoría, argumentando que el ciclo dominante siempre ha sido el de 41.000 años, pero que la Tierra tiene actualmente un comportamiento climático en que sólo tiene lugar una edad glacial cada dos o tres ciclos. Esto implicaría que el periodo de cien mil años no es más que una ilusión creada haciendo la media de ciclos que duran 80.000 y 120.000 años. Esta teoría se corresponde con la incertidumbre de las dataciones, pero no ha recibido demasiado apoyo.

Hay al menos dos tipos de variación en la actividad solar: 1) A muy largo término, los astrofísicos calculan que el Sol libera un 10% más de energía cada 109 años. De aquí a dentro de mil millones de años, el 10% añadido será suficiente como por causar un efecto invernadero irreversible en la Tierra. El aumento de la temperatura produce más vapor, el vapor funciona como un gas de efecto invernadero más potente que el CO2, la temperatura aumenta, se produce más vapor, etc.; 2) Variaciones a corto término. Puesto que el Sol posee un gran tamaño, los efectos de sus desequilibrios internos y los procesos de retroalimentación negativa tardan mucho tiempo en propagarse, de forma que estos procesos se potencian y producen todavía más desequilibrios. En este contexto, “mucho tiempo” quiere decir miles o millones de años. El aumento a largo plazo de la emisión de energía del Sol no puede ser la causa de las edades glaciales. Las variaciones a corto plazo mejor conocidas son los ciclos de las manchas solares, especialmente el mínimo de Maunder, que está relacionado con la parte más fría de la pequeña edad de hielo. Como los ciclos de Milankovitch, los efectos de los ciclos de las manchas solares son demasiado débiles y frecuentes para explicar el comienzo y el fin de las edades glaciales pero es muy probable que sean la razón de las variaciones de temperatura dentro de las edades glaciales.

Los episodios volcánicos más grandes conocidos, las erupciones que crearon las traps siberianas (que son una de las mayores y más enigmáticas emisiones de basalto del mundo) y del Decán (la meseta del Decán se extiende por la mayor parte del territorio centro-sur del subcontinente indio) y que jugaron un papel importante durante las extinciones en masa, no tienen nada a ver con las edades glaciales. A simple vista, parece que esto pueda implicar que el vulcanismo no puede producir glaciaciones. Aun así, el 70% de la superficie de la Tierra está cubierto de agua, y la teoría de las placas tectónicas predice que la corteza oceánica de la Tierra se renueva completamente cada 200 millones de años. Por lo tanto, es imposible encontrar indicios de llanuras submarinas o de otros grandes episodios volcánicos de más de 200 millones de años de antigüedad, y los indicios de episodios volcánicos más antiguos posiblemente ya han sido erosionados. En otras palabras, que no se hayan encontrado pruebas de otros acontecimientos volcánicos a gran escala no significa que no hayan tenido lugar.

En teoría, es posible que los volcanes submarinos pudieran poner fin a una edad glacial, creando un calentamiento global. Una explicación propuesta del máximo térmico del Paleoceno-Eoceno es que los volcanes submarinos liberaran metano atrapado en clatratos, causando un gran y rápido incremento del efecto invernadero. No parece haber indicios geológicos de estas erupciones en este periodo, pero esto no implica que no tuvieron lugar. Es más difícil ver qué papel podría tener el vulcanismo en empezar una edad glacial, puesto que los efectos que lo frenen deberán ser más débiles y a más corto plazo que los efectos que lo produzcan. Esto exigiría polos y nubes de aerosoles que permanecieran en la atmósfera superior, bloquearan la luz solar durante miles de años, cosa que parece muy improbable. Los volcanes submarinos no podrían producir este efecto puesto que el polvo y los aerosoles serian absorbidos por la mar antes de que llegaran a la atmósfera. No obstante, esta hipótesis se baraja como plausible en el caso de la Pequeña Edad del Hielo.

Dos glaciaciones han sido especialmente dramáticas en la historia de la Tierra: la Tierra Bola de Nieve, que se inició a finales del Proterozoico, hace aproximadamente unos 700 millones de años, y la glaciación wisconsiense o de Würm, acaecida a finales del Pleistoceno. Otra edad glacial de especial impacto en la historia reciente fue la Pequeña Edad de Hielo, que abarcó desde comienzos del siglo XIV hasta mediados del XIX. La hipótesis Tierra Bola de Nieve hace referencia a los efectos que una gigantesca glaciación provocó sobre todo el planeta, la mayor de las acaecidas en la Tierra, según los registros de datos disponibles. La glaciación se inició a finales del Proterozoico, hace aproximadamente unos 700 millones de años. Esta teoría intenta dar explicación a los depósitos de sedimentos glaciales encontrados en latitudes tropicales y que se acumularon durante el período Criogénico (hace 850 a 630 millones de años), así como otros enfriamientos enigmáticos que se han encontrado en el registro geológico del período Criogénico.

Según las teorías actuales, la causa de esta gran glaciación se encuentra en la formación de un supercontinente, Rodinia, situado en la zona ecuatorial. Rodinia fue un supercontinente que existió hace 1.100 millones de años, durante la Era Neoproterozoica, reunía gran parte de la tierra emergida del planeta. Empezó a fracturarse hace 800 millones de años debido a movimientos magmáticos en la corteza terrestre, acompañados por una fuerte actividad volcánica. La existencia de Rodinia se basa en pruebas de paleomagnetismo que permite obtener la paleolatitud de los fragmentos, pero no a su longitud, que los geólogos han determinado mediante la comparación de estratos similares, actualmente muy dispersos. Una configuración tropical de los continentes es, quizás sorprendentemente, necesaria para desencadenar una Tierra Bola de Nieve. Los continentes tropicales reflejan más luz que el océano abierto, de forma que absorben menos calor del Sol; la mayoría de la absorción de energía solar a la Tierra tiene lugar actualmente a los océanos tropicales.

Además, los continentes tropicales reciben más precipitaciones, cosa que incrementa el caudal y la erosión. Cuando se las expone en el aire, los silicatos sufren reacciones erosivas que extraen dióxido de carbono de la atmósfera terrestre. Los cationes de calcio liberados reaccionan con el bicarbonato disuelto en los océanos para formar carbonato de calcio como roca sedimentaria. Esto transfiere dióxido de carbono, un gas de efecto invernadero, del aire a la geosfera y, en un estado de equilibrio a escala geológica, contrarrestando el dióxido de carbono que liberan los volcanes a la atmósfera. La escasez de sedimentos apropiados para analizarlos hace que sea difícil establecer con precisión la distribución continental durante el Neoproterozoico. Algunos modelos sugieren una configuración polar de los continentes, una característica de todas las otras glaciaciones importantes, puesto que representan un punto en que se puede acumular el hielo. Cambios en la circulación oceánica podrían haber desencadenado la Tierra Bola de Nieve.

La glaciación de Würm es el periodo glacial más reciente dentro de la edad glacial actual, y tuvo lugar durante el periodo Pleistoceno. Empezó hace aproximadamente cien mil años y se acabó entre hace 10.000 y 15.000 años. Durante este periodo hubo diferentes variaciones entre adelanto y retroceso de los glaciares. El punto máximo de esta glaciación fue hace aproximadamente dieciocho mil años. Mientras que el proceso general de enfriamiento global y avance de los glaciares fue similar, las diferencias locales en el desarrollo y retroceso de los glaciares hace difícil comparar los detalles de un continente al otro. La última glaciación se concentró en las enormes capas de hielo de Norteamérica y Eurasia. Vastas regiones de los Alpes, la Himalaya y los Andes estaban cubiertas de hielo, y la Antártida permaneció helada. Canadá estaba casi cubierto de hielo, así como el norte de los Estados Unidos, ambos cubiertos por el inmenso casquete de hielo Lauréntido. Alaska permaneció en parte libre de hielo debido a condiciones climáticas áridas. Hubo glaciaciones locales en las Montañas Rocosas.

En Gran Bretaña, Europa continental y el noroeste de Asia, la capa de hielo Escandinava volvió a llegar hasta el norte de las islas Británicas, Alemania, Polonia y Rusia, llegando tan al este como la península de Taimyr al oeste de Siberia. El punto máximo de la glaciación al oeste de Siberia fue hace aproximadamente 18.000 y 17.000 años; más tarde que en Europa (entre hace 22.000 y 18.000 años). El nordeste de Siberia no estaba cubierto de hielo. El océano Ártico, situado entre las dos vastas capas de hielo de América y Eurasia, no estaba completamente helado, sino que, como en la actualidad, estaba cubierto con hielo relativamente poco grueso, susceptible a los cambios estacionales y lleno de icebergs generados en los casquetes de hielo aledaños.  Según la composición de los sedimentos marinos estudiados, incluso habría habido épocas en las que las aguas quedaban libres de hielo. La glaciación del hemisferio sur fue menos importante debido a la configuración actual de los continentes.

Había casquetes de hielo en los Andes, donde se conocen seis avances de glaciares entre el 31500 a. C. y el 11900 a. C. en los Andes de Chile. La Antártida estaba completamente helada, como hoy en día, pero el casquete polar no dejó ninguna parte sin cubrir. El continente australiano sólo estaba helado en una zona muy pequeña cerca del Monte Kosciuszko, mientras que la glaciación estaba más extendida en Tasmania. En Nueva Zelanda hubo glaciación en sus Alpes Neozelandeses, de donde se conocen al menos tres avances glaciares. Hubo casquetes de hielo locales en Irian Jaya, Indonesia, donde todavía se conservan restos de los glaciares del Pleistoceno en tres zonas diferentes. La glaciación de Würm es la parte mejor conocida de la edad glacial actual, y ha sido intensamente investigada en Norteamérica, Eurasia septentrional, Himalaya y otras regiones antiguamente heladas del mundo. Las glaciaciones que tuvieron lugar durante este periodo cubrieron muchas áreas, principalmente el hemisferio norte, y en menor medida el hemisferio sur.

Para continuar con este tema, ver artículo: Las edades glaciales en la Tierra 2/2

Si estás interesado en temas ciéntificos que tienen alguna relación con antiguas civilizaciones, tal vez también te interese mirar los siguientes artículos:   La física moderna, ¿debe algunos de sus conceptos a civilizaciones remotas?  ;  La interrelación entre la Tierra y los otros cuerpos celestes; Las sendas del Dragón; evolucionismo o creacionismo, ¿dónde está la verdad?; Eras geológicas de la Tierra

diciembre 23, 2010 - Publicado por | Ciencia | , , , , , , , , , , , , , , ,

14 comentarios »

  1. Como dice Jesus: El que tenga ojos que vea y oidos que oiga

    Solo la verdad nos hara libres….les felicito por sus temas

    Comentario por Geovanny Noboa | diciembre 24, 2010 | Responder

    • Muchas gracias por el comentario. En efecto, creo que hay que tener una mente abierta para poder ver la realidad

      Comentario por oldcivilizations | diciembre 24, 2010 | Responder

  2. I loved as much as you’ll receive carried out right here. The sketch is tasteful, your authored material stylish. nonetheless, you command get bought an impatience over that you wish be delivering the following. unwell unquestionably come further formerly again since exactly the same nearly a lot often inside case you shield this hike.

    Comentario por program tv | febrero 27, 2011 | Responder

  3. Thank you for the auspicious writeup. It in fact was a amusement account it. Look advanced to far added agreeable from you! By the way, how could we communicate?

    Comentario por program tv | marzo 1, 2011 | Responder

  4. Outstanding post once again! I am looking forward for more updates!

    Comentario por piłka nożna | marzo 1, 2011 | Responder

  5. Why am I so fat? Please tell me the secrets of slim wallpaperness.

    Comentario por Free Cartoon Wallpapers | marzo 29, 2011 | Responder

  6. Hey webmaster, thanks a ton for providing this information. I found it brilliant. Cheers, …

    Comentario por touch up paint for cars | abril 16, 2011 | Responder

  7. I very appreciate this great posting which are given for us all. I guarantee this is advantageous for most people.

    Comentario por Rodolfo Damato | mayo 18, 2011 | Responder

  8. Hello! I just would like to give a huge thumbs up for the wonderful info you have got here on this post. I will probably be coming back to your weblog for far more soon.

    Comentario por international proxies | febrero 8, 2012 | Responder

  9. excelente , muy explicativo todo

    Comentario por maxi | julio 28, 2012 | Responder

  10. Buen aporte, sin embargo este documento parece no ser original ya que tiene muchos párrafos copiados íntegramente del libro de Uriarte, 2010 : “Historia del clima de la Tierra”. Lástima que carezca de originalidad.
    Geog. Victor Soto

    Comentario por Soto Víktor | enero 25, 2013 | Responder

    • Gracias por el comentario y por el aviso sobre los párrafos coincidentes con el libro de Uriarte, 2010 : “Historia del clima de la Tierra”. Este artículo lo escribí el mes de diciembre de 2010 y para ello me basé en distintas informaciones que busqué a través de internet. Yo no tengo el libro de Uriarte, pero después de su comentario, he mirado los escritos de Antonio Uriarte y he visto que, en efecto, diversos párrafos de mi artículo corresponden al libro de Uriarte. Una vez constatado este hecho, añadiré en el artículo una referencia al libro de Antonio Uriarte.

      Comentario por oldcivilizations | enero 26, 2013 | Responder

  11. Me sirvio mucho pa mi tarea de historia xd

    Comentario por sofia | mayo 27, 2013 | Responder

  12. Interesante.
    Actualmente en Chile existe sequía, las represas casi están sin agua, ya han pasado varios años con escasas lluvias, y regiones donde llovía constantemente hace unos 20 años atrás, ya no llueve o llueve 1 vez al año.
    Más aún en los tres últimos años post terremoto en Chile en el año 2010. Quizás al cambiar el eje de la tierra quedamos menos expuestos al sol. En regiones donde había sol casi todo el año como es en Arica (llamada la ciudad de la eterna primavera) e Iquique, ha estado muy frío, hemos necesitado estufas, yo llevo ya 15 años en Iquique y en los 12 primeros años que estuve no necesitaba estufa, caminaba con polera o camiseta por las calles casi todo el año, ahora en los últimos 3 años, en los inviernos, que son más largos, he llegado a usar abrigo, bufanda y hasta gorro en oportunidades.
    Muchas gracias

    Comentario por Veronica | octubre 6, 2013 | Responder


Deja un comentario

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

%d personas les gusta esto: